un 2 00 3 A Closer Look at Lattice Points in Rational Simplices 1
نویسنده
چکیده
We generalize Ehrhart’s idea ([Eh]) of counting lattice points in dilated rational polytopes: Given a rational simplex, that is, an n-dimensional polytope with n+ 1 rational vertices, we use its description as the intersection of n+1 halfspaces, which determine the facets of the simplex. Instead of just a single dilation factor, we allow different dilation factors for each of these facets. We give an elementary proof that the lattice point counts in the interior and closure of such a vectordilated simplex are quasipolynomials satisfying an Ehrhart-type reciprocity law. This generalizes the classical reciprocity law for rational polytopes ([Ma], [Mc], [St]). As an example, we derive a lattice point count formula for a rectangular rational triangle, which enables us to compute the number of lattice points inside any rational polygon.
منابع مشابه
A Closer Look at Lattice Points in Rational Simplices
We generalize Ehrhart’s idea ([Eh]) of counting lattice points in dilated rational polytopes: Given a rational simplex, that is, an n-dimensional polytope with n+ 1 rational vertices, we use its description as the intersection of n+ 1 halfspaces, which determine the facets of the simplex. Instead of just a single dilation factor, we allow different dilation factors for each of these facets. We ...
متن کامل3 J un 2 00 3 Multidimensional Ehrhart Reciprocity 1 Matthias Beck
In [1], the author generalized Ehrhart’s idea ([2]) of counting lattice points in dilated rational polytopes: Given a rational polytope, that is, a polytope with rational vertices, we use its description as the intersection of halfspaces, which determine the facets of the polytope. Instead of just a single dilation factor, we allow different dilation factors for each of these facets. We proved ...
متن کاملun 2 00 3 Multidimensional Ehrhart Reciprocity 1
In [1], the author generalized Ehrhart’s idea ([2]) of counting lattice points in dilated rational polytopes: Given a rational polytope, that is, a polytope with rational vertices, we use its description as the intersection of halfspaces, which determine the facets of the polytope. Instead of just a single dilation factor, we allow different dilation factors for each of these facets. We proved ...
متن کاملAn Introduction to Empty Lattice Simplices
We study simplices whose vertices lie on a lattice and have no other lattice points. Suchèmpty lattice simplices' come up in the theory of integer programming, and in some combi-natorial problems. They have been investigated in various contexts and under varying terminology Can thèemptiness' of lattice simplices bèwell-characterized' ? Is theirìattice-width' small ? Do the integer points of the...
متن کاملThe number of lattice points in alcoves and the exponents of the finite Weyl groups
We count lattice points in certain rational simplices associated with an irreducible finite Weyl group W and observe that these numbers are linked to the exponents of W .
متن کامل